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Introduction

HE determination of the stresses or loads in a structure un-

dergoing simultaneous harmonic and random excitation is a
subject of some dispute in industry. In general, the dynamic re-
sponse analyses of structures for random and harmonic cases are
performed separately, and the results are then combined to obtain
a design load. One example of such a structure is a component of
a rocket engine. There can be several sources that produce random
excitation, including the gas generator and main combustion cham-
ber. These excitations are characterizedby a power spectral density
(PSD) spectrum of accelerations, which are frequently measured
and scaled from a similar engine. These accelerations are used in
a base excitation random response analysis, which results in PSD
response spectra at any desired location. The mean of these spectra,
defined simply as a load (althoughit can be in any desired quantity),
is zero, and because the process can be assumed to be Gaussian,'
the rms of the response is defined to be equal to one standard devia-
tion o. Simultaneously, the turbomachineryin the engine generates
large harmonic loads due to the unavoidable unbalance in their ro-
tors. The frequency of the harmonic excitations are at the shaft
speed of the turbines and their multiples. The excitation from this
sinusoidal loading, which can also be determined by previous ac-
celeration measurements, is applied independently in a frequency
response analysis, which generates the amplitude of a sinusoidal
response for any desired location for a specified range of harmonic
excitation frequencies.

The combination of random loads has been a subject of exten-
sive research, in particular where quantifying the amount of error
in the loads equations is concerned? Detailed study of the use of
similar equations for the combination of random and harmonically
generated loads has not been performed, however. Perhaps because
of this lack of examination, an industry standard loads combina-
tion equation has not been agreed on. There are, therefore, several
different methodologies that have been applied by various users.
They are all based on the method used for obtaining design loads
for purely random environments, where standard practice is to use
the 3 x o, value for the design load. This value will exceed the
response 99.86% of the time because the distribution is assumed
to be Gaussian. The most frequently used method for random and
harmonic loading, referred to here as the standard method, simply
uses the sum of the amplitude of the sine load Ag;, and three times
the rms of the random load o;,, (Ref. 3):

designload = Ay, + 30, M

This technique yields unnecessarily overconservative values be-
cause it assumes that the sine peak value always occurs simulta-
neously with the peak random value, which is unrealistic. Another
method frequently applied is to multiply three times the square root
of the sums of the squares (SRSS method) of the rms of both the
random and the sines*:

designload =3+v/(0yy)? + (Cpun)? @)
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where oy, the rms of the sine wave, is equal to the sine amplitude
dividedby /2. This method is also unrealistically overconservative
becauseit treats the sine as if ithad a normal probability distribution,
which has a much larger range than a sine function. Neither of
these closed-form methods produces a design load associated with
a particular probability level.

There is considerable disagreement about whether the 3o,
should be used for the random loading-only case because the peaks
that can cause fatigue fit a Rayleigh distribution better.> However,
if this 99.86% level is chosen as the method for evaluating random
dynamic loads, it would be consistent to evaluate the combination
of sine and random loads in the same manner so that the design
load would correspond with a specified probability of exceedence.
A method is described hereafter that applies the Monte Carlo tech-
niqueto generate this consistentdesign value for the combinationof
the loadsresultingfrom these simultaneousexcitations. This method
producesa value that exceeds 99.86% of the responses for the com-
bined excitation and is defined here as the equivalent 3o value.
Although this methodology is relatively straightforward, it has not
been generally appliedin industry and has not been discussedin the
literature.

Loads Combination Using Probability
Density Functions

Because a sine wave considered by itself is not a random signal,
it is somewhat unclear how to combine harmonic analysis results
with output from a random excitation analysis to obtain a design
load. The harmonic signal can, however, be defined as a stationary
random process when combined with an independent Gaussianran-
dom signal because its phase relationship ¢ with the random signal
is random.® If the harmonic signal is defined as

Psin = Asin(ot + ¢) 3)

then the argument (ot + ¢) is, therefore, a random variable with a
uniform distributionover the range from —7/2 to +7/2. The prob-
ability density function of the sine function of this distributionis

Fo) =1l zay/T=Gray @)

The equivalent 3o value can now be determined exactly by us-
ing the equivalent event technique for calculating the cumulative
distribution functions (CDFs) of functions of random variables. For
the function z =x + y, where x and y are random variables, the
resultant CDF F(z) is defined in terms of the probability density
functions f, and f, as

o z—y
F(2) =/ (/ fx(X)dX>fy(y) dy ®)

If x represents the random load, it can be characterized by a normal
distribution with mean zero and standard deviation equal to the rms
from the random analysis. Substituting the normal probability den-
sity function and the probability density function shown in Eq. (4)
into Eq. (5) results in

) /A 1 /> (—(x/crm>2>dx
Z) = ——— exp| —————
I = A

x——t gy ©)

TA1 = (y/A)?

where the integral over y is evaluated only from —Ag, to +Ag;, be-
cause the functionis undefined outside of thatrange. A closed-form

Table1 Comparison of integration
and Monte Carlo methods

F(z)
Integration Monte Difference,
Case A o VA method Carlo %

1 2 1 3 0.96553  0.96556 0.003
2 3.1 4 0.97218  0.97226 0.008
3 3 1 5326 099846 0.99862 0.016
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Table2 Comparison of methods used to combine sine and random loads

Sine c Equivalent Standard Difference from Difference from Difference from
amp Random 30 method equivalent 30, % SRSS equivalent3c, % Alternate A equivalent 3o, %
26.00 4.00 34.59 38.00 10 56.45 63 28.64 -17
97.00 14.67 12828  141.00 10 210.42 64 106.51 -17
109.00 25.33 166.48 185.00 11 243.39 46 132.88 -20
99.00 46.33 210.05 238.00 13 251.84 20 170.65 -19
50.00 98.67 305.35 346.00 13 314.43 3 300.19 -2
64.00 109.33 351.62 392.00 11 354.99 1 334.19 =5
49.00 7.00 63.58 70.00 10 106.04 67 53.31 -16
solution for this integral cannot be obtained; however, the integral F(z)
can be evaluated numerically for specific values of A and z for a 1+
Gian = 1 using the software code Mathematica.” Note that this solu-
tion is numerical and, therefore, not exact. Several solutions of the
. . . . 0.8
integral using this procedure are shown in Table 1.
Loads Combination Using Monte Carlo 0.6
The new method uses a Monte Carlo simulation to obtain this
value more quickly and for any value of A, z, and o;,,. The random 0.4
load is first simulated by generating a vector of points {r} that fall
withina Gaussian (or normal) distributionof mean zero and standard 02
deviationequal to the rms value resulting from the random analysis. . .
This distributioncan be expressedas {r } ~ N(0.0, Giangom )- The vec- Combined Amplitude z
torsrepresentingthe results from the harmonicanalysisare then gen- 4 ) 2 4 6

erated. The method can account for analysis results from multiple
independent harmonic excitations {y};, i =1, ..., n. Because the
frequencies of each sine wave are differentand the relative phasing
is unknown, each sine wave should be considered independently®
This method is only applicable for independent harmonic sources,
such as excitations from different turbopumps. The loads coming
from multiples of the primary shaft rotational speed for a single tur-
bopump would be correlated and, therefore, not independent. For
the independent case, a vector for each wave of the same length
as {r} is, therefore, created using the probability density function
defined earlier, resulting in the following:

{yh =A; sin({x}) (M

where {x}is a random vector uniformly distributed between —7/2
and +m/2. The resulting vector {y} will contain points that have
the correct probability distribution of a sine wave, but are related
randomly in phase. The summation of all of the harmonic signals
and the random signal is performed for each sample to create a new
vector {z}, which is equal to a sample set of total responses of the
structure to the multiple simultaneous excitations:

ey ={r}+h+ bt -+ ®)

The CDF of {z} is then generated, and a search procedure is per-
formed to obtain the value from this CDF thatis greaterthan 99.86%
of the responses, defined earlier as the equivalent 3o value. An ex-
ample of a CDF of the combination of a random load with rms =1
with a harmonic load of amplitude 1 and another harmonic load of
amplitude 2 is shown in Fig. 1.

The accuracy of the Monte Carlo simulationis dependenton the
number of samples selected. There are several methods for deter-
mining this accuracy; applying the method derived by Shooman,’
the variation in the probability estimate p, for a given number of
samples n with a specified confidence is

Py rkopyps(1=pp)in 9)

For 95% confidence level with three-digit accuracy (resulting in a
probability of 99.9%), the number of required samples is 124,689,
which ran in 15 s (wall clock) on a Silicon Graphics O2 desktop
workstation. If desired, the number of required samples can be re-
duced substantially if a more conservative, higher probability level
is sought that allows a larger tolerance, or if other less stringent
methods are used to determine the required number of samples. The
accuracy of the analysis is also somewhat sensitive to the number

Fig. 1 CDF of combined loadings.

of simultaneous signals that are combined. For a combination of
several signals, more consistent results were obtained using larger
sample sizes than for a combination of just one random and one
harmonic load.

Verification and Comparison

The Monte Carlo approachhas been verified by comparingit with
results obtained using the integration approach (Table 1). A sample
size of 120,000 was used. As noted earlier, neither solution yields
the exactanswer, but the small errorbetween the two serves to verify
the Monte Carlo methodology.

Comparisons with the other methods for calculating the com-
bined load were also carried out. In addition to the standard and
SRSS techniques described earlier, another proposed approach was
evaluatedthat attempts to reduce the conservatismand still maintain
a closed-formsolution. This method, called alternative A, takes the
root sum square of the peak values:

deSign load = 3\/(Asin)2 + (3Grandom)2 (10)

Results for a large variety of combinations of random and sine loads
(for a single sine wave) were calculated, and some are shown in
Table 2. The complete set of results indicates that the standard ap-
proach can exceed the equivalent 3o approach by up to 20%. The
SRSS method also always exceeds the equivalent 3¢ value, some-
times significantly, whereas alternative A generally yields values
below the equivalent 3o value and, hence, is unconservative.

Conclusion

The Monte Carlo technique has been applied for the rapid de-
termination of loads on a structure that undergoes both random
and harmonic excitations. This method produces a consistent value
associated with any specified level of probability of exceedence.
Application of this method can substantially reduce the amount
of load used for the design of structures compared to traditional
techniques. These design loads are especially critical for weight-
sensitive aerospace structures. In addition, because of the speed of
desktop computers, the analysis can be performed extremely eas-
ily and can result in values almost as quickly as the closed-form
methods. The technique has been successfully applied to the de-
termination of loads for 44 separate structural components in the
FASTRAC engine program for 10 or more load cycles, resulting in
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large cost savings. One avenue of future work in this area is incor-
porating the effect of the correlationof the sine loads for harmonics
of a single rotating shaft.

References

lDebChaudhury, A., Rajagopal, K., Ho, H., and Newell, J., “A Proba-
bilistic Approach to the Dynamic Analysis of Ducts Subjected to Multibase
Harmonic and Random Excitation,” Proceedings of the AIAA 31st Struc-
tures, Structural Dynamics, and Materials Conference, ATAA, Washington,
DC, 1990, pp. 1054-1061.

2Gaver, D. P., “On Combinations of Random Loads,” Naval Postgraduate
School, U.S. Navy Rept. AD-A085489, Monterey, CA, Jan. 1980.

3“Rocketdyne Structural Dynamics Manual,” Rocketdyne Propulsion and
Power Div., Boeing North American, Inc., Paper 578-R-3, Vol. 2, Sec. 2.2-6,
Canoga Park, CA, 1989.

4Wen, Y. K., Structural Load Modeling and Combination for Perfor-
mance and Safety Evaluation, 1st ed., Elsevier, Amsterdam, 1990, p. 211.

SSarafin, T. P., Spacecraft Structures and Mechanisms, 1st ed., Kluwer
Academic Publishers, London, 1995, p. 359.

6Wirshing, P, Paez, T., and Ortiz, K., Random Vibrations: Theory and
Practice, 1st ed., Wiley, New York, 1995, p. 81.

T"Mathematica Software Code, Ver. 3, Wolfram Research, Inc., Cham-
paign, IL, 1996.

8Johnson, P., and Ayyub, B., Probabilistic Structural Mechanics Hand-
book, 1sted., edited by C. Sudararajan, Chapman and Hall, New York, 1995,
p. 652.

9Shooman, M. L., Probabilistic Reliability: An Engineering Approach,
1sted., McGraw-Hill, New York, 1968, pp. 507, 508.

R. B. Malla
Associate Editor

Optimum Thrust-to-Weight Ratio
for Gravity-Turn Trajectories

G. E. Dorrington*
University of London,
London, England E1 4NS, United Kingdom

Nomenclature
a = vehicle thrust-to-weightratio
g = gravitational acceleration, ms ™2
k = velocity constant, ms ™!
m = vehicle mass, kg
T = vehicle thrust, N
t = time, S
u = vehicle velocity, ms™!
Ve = exhaust velocity, ms™!
vy = effective exhaust velocity, ms™!
z = tan(¢/2)
AV, = gravity loss, ms™!
A = payloadratio
e = engine thrust-to-weightratio
H.s = design constant
Oy = design constant
¢ = vehicle flight path angle, rad
Subscripts
b = at burnout
opt = optimum (for maximum 2)
0 = initial
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Introduction

HE analysis of the ascent of a single-stage rocket from a

planetary surface to orbit on a gravity-turn trajectory is well
known.!™ This Note extends the analysis to quickly arrive at an
expression for the burnout-to-initialmass ratio of a single-stage ve-
hicle ascending in vacuo and thereafter derives some bounds on the
optimum initial vehicle thrust-to-weight ratio. The analysis is not
directly useful for detailed studies of vehicle performance because
a gravity turn is not an optimal trajectory, but it may still be edu-
cationally instructive, or possibly useful for concept evaluation and
preliminary design studies.

Analysis of a Single-Stage Rocket on a Gravity Turn

In a flat-Earth approximation,’? ignoring atmospheric drag, the
equations of motion of a rocket vehicle ascending on a gravity turn
(with no thrust vectoring) are

du =T é (1a)
me— =T —m
% g cOS a
d¢
— —osi 1b
udt gsing (1b)

where ¢ is the angle of the flight path from the vertical, T is the
vehicle thrust, m is the vehicle flight mass, u is the vehicle velocity,
and g is the gravitational acceleration (assumed to be constant and
equal to the surface value, go).

In the analysis that follows, it will be assumed that the vehicle
thrust-to-weightratio a is held constant at the initial (liftoff) value
throughoutthe ascent:

a =T/mg =Ty/mygy =ay ?2)

In this particular case, the substitution z = tan(¢/2) yields the
solution'

u=k"'(1+2% (3a)

du =k{(a — Dz '+ (a + 1)z°}) (3b)
dz
where the constant k is equal to half the burnout velocity, kK =u,/2,
ifand when u =u;, andm =m,, at z =1 (a condition thatis assumed
hereafter).
If the thrust is approximated by

dm
T =—v,— “)
¢ dr
where the exhaust velocity v, is assumed to be constant, then the
rocket’s accelerationis given by

de v dm )
dt m dt

where v} is an effective exhaust velocity, v =v.(1 — a™' cos ¢).
The burnout-to-initial mass ratio m;,/m, is found by integration
with respect to velocity from u =0 to the burnout velocity u =u,:

up
&{ﬂ} =—/ d ©)
my 0 v,

Noting cos ¢ =(1 — z2)/(1 + z?), this integral becomes

&,{ﬂ}z_/"”{l_ﬂ;ﬁ}_ldl
my 0 a(l +z2) v,

1
1

=L —a(l + z2%)z*7%dz (7)
Ve Jo 2

which can easily be solved to yield a simple expression:

2
m =exp{_ﬂa_} ®



